
The De Morgan Journal 1 no. 1 (2011), 19–27 www.de-morgan.org

PERCEPTIONS, OPERATIONS AND PROOF IN UNDERGRADUATE
MATHEMATICS

DAVID TALL

Teaching and learning undergraduate mathematics involves the introduc-
tion of ways of thinking that at the same time are intended to be more pre-
cise and logical, yet which operate in ways that are unlike students’ previous
experience.

When we think of a vector, in school it is a quantity with magnitude and
direction that may be visualized as an arrow, or a symbol with coordinates
that can be acted upon by matrices. In university mathematics it is an ele-
ment in an axiomatic vector space.

As I reflected on this situation I realised that these three entirely different
ways of thinking apply in general throughout the whole of mathematics
[7, 8]. The two ways encountered in school depend on the one hand on
our physical perception and action and dynamic thought experiments as we
think about relationships, on the other they depend on operations that we
learn to perform such as counting and sharing which in turn are symbolised
as mathematical concepts such as number and fraction.

At university, all this is turned on its head and reformulated in terms of
axiomatic systems and formal deduction. Our previous experiences are now
to be refined and properties are only valid if they can be proved from the ax-
ioms and definitions using mathematical proof. The formal approach gives
a huge bonus. No longer do proofs depend on a particular situation: they
will hold good in any future situation we may meet provided only that the
new context satisfies the specific axioms and definitions. However, the new
experience is also accompanied by mental confusion as links, previously
connected in perception and action, now require reorganisation as formal
deductions, and subtle implicit links from experience may be at variance
with the new formal setting.

Further analysis of the development of mathematical thinking reveals
three quite different forms of thinking and development that I term concep-
tual embodiment, operational symbolism and axiomatic formalism. These
operate in such different ways—not only at a given point in time, but also
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in their long term development—that I called them three mental worlds of
mathematics.

Conceptual embodiment and operational symbolism develop in comple-
mentary ways in school mathematics in which physical operations relate
to algebraic symbolism (Thomas [10]). The world of conceptual embodi-
ment is based on our operation as biological creatures, with gestures that
convey meaning, perceptions of objects that recognise properties and pat-
terns, thought experiments that imagine possibilities, and verbal descrip-
tions and definitions that formulate relationships and deductions as found
in Euclidean geometry and other forms of figures and diagrams. The world
of operational symbolism involves practising sequences of actions until we
can perform them accurately with little conscious effort. It develops beyond
the learning of procedures to carry out a given process (such as counting)
to the concept created by that process (such as number). Gray and Tall [3]
formulated this flexibility by speaking of such symbols as ‘procepts’ that
act dually as process and concept. The operational world of symbolism de-
velops in a spectrum of ways from limited procedural learning to flexible
proceptual thinking.

The third world of axiomatic formalism builds from lists of axioms ex-
pressed formally through sequences of theorems proved deductively with
the intention of building a coherent formal knowledge structure. Its ma-
jor criterion is that relationships must in principle be deducible by formal
proof. However, students and mathematicians interpret formalism in a va-
riety of ways, depending on the links with embodiment and symbolism.
Some build naturally on their previous experience to give meaning to def-
initions. For instance, the idea of a sequence (sn) tending to a limit may
be seen by plotting the successive points (n, sn) and seeing that, the se-
quence tends to a limit L if, given a required error ε > 0, then from some
value N onwards, (for n > N ) the terms sn lie between two horizontal
lines L± ε. Others build formally by extracting meaning from the definition
by learning to reproduce it and practising formal proofs until it becomes a
familiar mode of operation. Both approaches are possible and can lead to
successful formal thinking, although both can fail, either because the new
formal ideas conflict with beliefs built from earlier experience or because
the multi-quantified definitions are just too difficult to handle (Pinto and
Tall [4, 5]).

The question arises as to how this framework of three worlds of mathe-
matics can help us as mathematicians to encourage our students to think in
successful mathematical ways. The framework is general. Although embod-
iment starts earlier than operational symbolism, and formalism occurs much
later still, when all three possibilities are available at university level, the
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framework says nothing about the sequence in which teaching should oc-
cur. Indeed, in the learning of mathematical analysis some students clearly
follow a natural approach based on their thought experiments and concept
imagery while others are more comfortable working in a purely formal con-
text. Not only is it possible to use embodied examples to give meaning to
a formal theory, it is also possible to use a formal theory to highlight the
essential properties in an embodied example.

The framework can be better understood by reflecting on specific cases.
Consider, for example the notion of continuity. Embodiment clearly gives
powerful insights that can be used to motivate symbolic relationships and
formal definitions. For instance, the dynamic idea of natural continuity arises
from the physical drawing of a graph with a ‘continuous’ stroke of the pen-
cil remaining on the paper and leaving a continuous trace. While this is
often considered to be an ‘intuitive’ notion of continuity that lacks a formal
definition, it is also possible to envisage the graph as a stroke of a pencil
which covers the theoretical graph with a stripe of height ±ε. If a small
portion of the graph is stretched horizontally, while maintaining the vertical
height, the graph will ‘pull flat’ in the sense that, for some δ > 0, then for
any x between x0−δ and x0+δ, the value of f(x) will lie between f(x0)−ε
and f(x0)+ ε (Tall [9]). In this way it is possible to have a natural transition
from embodied continuity to the formal definition in mathematical analy-
sis, which may help a natural learner but may be unnecessary for a formal
learner.

Elementary calculus is highly amenable to a natural approach that links
together visual insight and symbolic manipulation without introducing for-
mal epsilon-delta definitions. Using computer technology to magnify graphs
reveals the property that many continuous graphs visibly approximate to a
straight line under high magnification. Such a graph is said to be ‘locally
straight’. The slope of a locally straight graph can be seen by highly magni-
fying a portion of a graph to visualize it as essentially straight and to mea-
sure its slope. This gives a natural distinction between continuity of a graph
drawn with a pencil or with pixels on a graphic display (which will ‘pull
flat’) and differentiability (which involve graphs that are ‘locally straight’).
It enables students to visualize non-differentiability (with ‘corners’ having
different left and right derivatives, or even functions that are so wrinkled
that they do not look straight no matter how much they are magnified) and
to realise that most continuous functions are not differentiable (Tall, 2009).
Such an approach, although based on visual and symbolic techniques only,
gives far greater insight into the meaning of the notions of continuity and
differentiability.

Furthermore, for a locally straight function, the Leibnitz notation dy/dx
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may be interpreted as a quotient of the components of the tangent vector, as
originally conceived by Leibnitz himself. In such an interpretation, dx and
dy can be called differentials, representing the components of the tangent
vector up to a scalar multiple. Now a first-order differential equation is just
that: it formulates the direction of the tangent in which the differentials are
the components dx and dy.

Software can be programmed to build up the numerical slope of a graph
dynamically by shifting along and computing

f(x+ h)− f(x)
h

for variable x and fixed h. This can be drawn as a practical slope function
that stabilizes on a visible graph on screen for small values of h, revealing
the stabilized graph as the derivative. The embodied action of looking along
a graph, imagining its changing slope operates on a visual object, (the graph
of f ) and gives a new object (the stabilized graph Df ). For instance, if
f(x) = sinx, then looking at the changing slope along the graph gives
Df(x) = cosx. The symbol D is here an embodied operator that means
‘look along the graph and see its slope function Df ’.

Focusing on a specific point x gives the equation

Df(x) =
dy

dx
where Df(x) is the value of the function produced by the operation D cal-
culated at x and dx and dy are differentials (components of the tangent).
This leads to the natural idea of blending of the two meanings by writing

dy

dx
=
d(f(x))

dx
=

d

dx
f(x)

and allowing the symbol d/dx to be interchanged with the operation D.
This approach is a quite different from that suggested by the APOS the-

ory of Dubinsky (e.g. Asiala et al., 1996), which speaks of focusing on a
process, here the limit process

lim
h→0

(f(x+ h)− f(x))/h,

and encapsulating it as an object. Fundamentally, operating on an object
to construct a visible object is far more elementary than encapsulating a
process to give an as yet unknown object. Research results speak for them-
selves: the visual approach is highly successful (Tall, 1986) whereas the
APOS view, programming functions symbolically to compute a practical
derivative that is to be encapsulated as a symbolic object proves to be far
more elusive (Cottrill et al. [2]).

There is a clear distinction between a natural approach to elementary cal-
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culus and a formal approach to mathematical analysis. Elementary calculus
blends together experiences in embodiment and symbolism without enter-
ing the complicated formal world of mathematical analysis that is charac-
terised by the multi-quantified epsilon-delta definition of limit.

Notice that I am not saying that one approach should be privileged over
another. It is not a question of whether one should teach the formal defini-
tion of limit or not, it is a question of the objective of the particular course
and its appropriateness for the current development of the learner.

If the objective is to give insight into the calculus as an operational sys-
tem in applications in which the Leibnitz notation plays its part, then a lo-
cally straight approach gives both human meaning and operational symbol-
ism. If the objective is to develop logical mathematical analysis (preferably
as a course that follows elementary calculus), then the handling of multi-
quantified definitions is part of the toolkit required for rigorous mathemat-
ical thinking. The most important aspect is to decide upon the aims of the
course and not to inflict formal subtleties on students who are better served
by a meaningful blend of embodiment and symbolism.

The three worlds of mathematics each offer their own distinct advantages:
– embodiment gives a basis of human meaning that can be translated into

flexible symbolism,
– symbolism offers a powerful tool for suitably accurate computation and

precise symbolic solutions,
– formalism offers precise logical deduction that will operate in any con-

text where the axioms and definitions are satisfied.
Consider, for example, the manipulation of multi-quantified statements.

Embodiment will allow thought experiments to think about how to negate
such a statement, to allow one to realise that to prove that a universal state-
ment is not true, one only needs a single counter-example and that to prove
an existence statement is not true requires a universal statement of its false-
hood. Symbolism translates these statements into ¬∀ ≡ ∃¬ and ¬∃ ≡ ∀¬.
In this way the definition of continuity of a function f at a point x on a
domain D can be written as

∀ε > 0 ∃δ > 0∀y ∈ D (|x− y| < δ ⇒ |f(x)− f(y)| < ε)

and its negation can be found by placing the negation symbol in front and
passing it successively over each quantifier, swapping one to the other to
get

∃ε > 0 ∀δ > 0∃y ∈ D (|x− y| < δ and ⇒ |f(x)− f(y)| > ε).

This symbolic manipulation is easier to handle than thinking through the
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full embodiment of the meaning all at once. It enables a more compressed
form of thinking that is supportive in building formal proofs.

What is essential in learning, is to build on the previous experience of the
students to enable them to make personal sense of the new constructs. In the
case of vectors, a vector also has three different meanings: as a geometric
quantity with magnitude and direction, as an algebraic entity written as a
column vector and as an element in a formal vector space. As a geometric
quantity, it can be represented as a physical action, say as a translation of
an object such as a triangle on the surface of a flat table. A given point A
on the object will be shifted by a translation to a point B and represented as
the shift ~AB from a starting point to a finishing point in which any two such
arrows will all have the same magnitude and direction. The translation can
therefore be represented by a single arrow of given magnitude and direction
that can be placed anywhere to represent the start and end of the shift of a
particular point. This gives an embodied arrow of given magnitude and di-
rection that represents the translation. Again we start with an object on the
table and a process of translating it to represent the translation as an embod-
ied object, the free vector. Representing the composite of two translations,
one after another, the result is represented by the unique free vector that has
the same effect. This conception of a free vector then has a meaning that
translates naturally to the triangle law or the parallelogram law.

A scalar multiple of a translation can be imagined as retaining the direc-
tion but multiplying the magnitude by the scalar (or reversing the direction
if the scalar is negative). This applies to free vectors by multiplying the
magnitude of the vector by the scalar in the same way.

The symbolic representation of a vector arises naturally through the so-
lution of a system of linear equations in n variables. For n = 1, 2, 3, such
equations can be represented in 1, 2, or 3 dimensional space. The sym-
bolic techniques naturally extend to n variables and, even if the ideas are no
longer easily visualised in higher dimensions, they can be represented by
coordinate vectors with n components with transformations represented by
matrices.

The formal representation of a vector is quite different. A vector space
is specified as an additive abelian group V with the action of a field of
scalars F which satisfies appropriate axioms. Such vectors now no longer
have magnitude or direction, but by introducing the notion of linear inde-
pendence and spanning set, a structure theorem may be proved to show that
any finite dimensional vector space over F is isomorphic to a space F n

represented as n-dimensional coordinates. In the case of n = 2 or 3 and
F = R gives an embodiment of the vector space almost like R2 or R3. I say
‘almost’ because the vectors in the vector space do not yet have a concep-
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tion of magnitude or direction. To do this, one needs to add an inner product
to enable one to specify lengths and angles.

The problem for the teacher and the student is to be aware what assump-
tions are being made. Are vector spaces being studied formally based only
on deductions from axioms or naturally, based on experiences of percep-
tions and actions in two and three-dimensional real space? The choice is up
to the teacher, but it needs to be explicit.

A natural approach would involve beginning from conceptions that are
familiar: solving linear equations in one, two and three variables and gen-
eralising them to n variables, which involves essentially the same symbolic
solution technique although no longer visualisable in higher dimensional
space. A formal approach would begin by abstracting the axioms for a vec-
tor space and writing down the list of axioms, and eventually proving a
structure theorem from the axioms that vectors in a finite dimensional vec-
tor space can be represented by coordinate vectors with n components. Of
course, if natural learners are presented with a formal approach, then the
initial theorems and proofs may make little sense and the course may only
come alive for them when the structure theorem for finite dimensional vec-
tor spaces has been proved and they are asked to solve linear equations
operationally using symbolic vectors.

The same can be said for other topic areas, for instance, groups studied
as embodied operations of actions on figures with symmetry, or symbolic
operations as permutations of n elements prior to a formal axiomatic ap-
proach.

Formally, the various lecture courses, be they in analysis, vector space
theory, group theory, or whatever, often begin with a formal axiomatic struc-
ture and formal deductions. Part of the way through the course a structure
theorem is proven to give the axiomatic system a structure that can be em-
bodied in a manner now based deductively on the axioms with an opera-
tional symbolism that can be used solve problems symbolically.

For instance, in analysis, the axioms for a complete ordered field identify
it uniquely up to isomorphism, allowing it to be visualised as a real line and
symbolised as infinite decimals. In vector space theory, a finite dimensional
vector space over F is isomorphic to F n, allowing it to be symbolised as
ntuples and embodied in R2 or R3. In group theory, a finite group is isomor-
phic to a subgroup of permutations.

The roles played by embodiment, symbolism and formalism are very dif-
ferent and the teacher has to make it explicitly clear what approach is being
taken. Is the course to be a formal course that requires formal deduction
from axioms? This may be built entirely formally until structure theorems
give it forms of embodiment and symbolism based on those axioms. Is it a
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formal course to be constructed naturally to enable students to give meaning
to formal definitions through a range of examples? Or is the course intended
to develop the necessary symbolic algorithms to enable the ideas to be used
in specific applications, with examples relevant to the area of application?

My own view is that it would help students enormously to gain an insight
into the strategy, which many lecturers use implicitly but is rarely made ex-
plicit. That is that formal mathematics clarifies issues by specifying explicit
axioms that are the ‘rules of the game’ and formal proofs deduced using
these rules are proven once and for all in any situation where the rules are
satisfied. The initial deductions from the rules are often quite technical and
form a barrier for many students. But once a structure theorem has been
proved, the techniques developed are now proven to work in all situations,
whether known now or to be encountered in the future. This formal foun-
dation is a gift worth having and it can be acquired by the formal thinker
who deduces only from the axioms using formal proof, or by the natural
thinker who sees the generalities bringing together many experiences that
give meanings to the formalities. An understanding of three different ap-
proaches to mathematics would be invaluable, made explicit both to teach-
ers and to students to be aware of the different objectives of mathematical
thinking, consisting of:

– ideas based on human perceptions and actions with thought experi-
ments to suggest what might be true,

– operations based on actions that give subtle mathematical processes to
express and solve problems symbolically,

and
– formal axioms, definitions and proof that give a coherent framework

of mathematics, supporting perception and operation with an underly-
ing formal structure that applies in any situation where the axioms and
definitions hold.
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