MathsBombe – the new maths-based competition aimed at A-level students (but open to all UK students in Year 13 (or equivalent) or below) – started this afternoon. This is the sister competition to the now well-established `Alan Turing Cryptography Competition’ but aimed at an older group of students and featuring mathematical puzzles. If you know anybody who would be interested in this then please pass this on (or if you know of any way of promoting the competition that we haven’t thought of then please let us know!). The url is: www.maths.manchester.ac.uk/mathsbombe

# Category Archives: Popular Maths

# MIT Primes

From Richard Rusczyk:

Over the last decade, many students have asked us how to get involved in research. To address this need, we are partnering with MIT PRIMES, which has trained many outstanding high school student researchers over the last several years. MIT PRIMES/AoPS CrowdMath will allow mathematically sophisticated high school students to collaborate on unsolved problems under the mentorship of outstanding mathematicians. CrowdMath begins with a series of Resources for students to discuss over the next couple of months. On March 1, we will release the official research problems, which will be based on material students learn while discussing the Resources.

Our goal is to discover new knowledge! Should we succeed, we’ll produce a research paper based on our collective work.

Visit the MIT PRIMES/AoPS CrowdMath pages for more details.

# The Inspection Paradox is Everywhere

From a brilliant blog by Allen Downey:

The inspection paradox is a common source of confusion, an occasional source of error, and an opportunity for clever experimental design. Most people are unaware of it, but like the cue marks that appear in movies to signal reel changes, once you notice it, you can’t stop seeing it.

A common example is the apparent paradox of class sizes. Suppose you ask college students how big their classes are and average the responses. The result might be 56. But if you ask the school for the average class size, they might say 31. It sounds like someone is lying, but they could both be right.

The problem is that when you survey students, you oversample large classes. If are 10 students in a class, you have 10 chances to sample that class. If there are 100 students, you have 100 chances. In general, if the class size isx, it will be overrepresented in the sample by a factor ofx.That’s not necessarily a mistake. If you want to quantify student experience, the average across students might be a more meaningful statistic than the average across classes. But you have to be clear about what you are measuring and how you report it.

# Jonathan Crabtree: Multiplication on the Reals with a Circle

This Geobebra applet follows a theorem by Ludolph van Ceulen from 16th century:

# Steven Strogatz: Whi Pi Matters

Our American colleagues celebrate today Pi Day, although, technically speaking, it is American Pi Day: for the rest of the world, today is 14/03/14. A brilliant article by Steven Strogartz in The New Yorker, a brief quote:

What distinguishes pi from all other numbers is its connection to cycles. For those of us interested in the applications of mathematics to the real world, this makes pi indispensable. Whenever we think about rhythms—processes that repeat periodically, with a fixed tempo, like a pulsing heart or a planet orbiting the sun—we inevitably encounter pi. There it is in the formula for a Fourier series: […]

Read the whole article.

# University Mathematics in Perspective

## University Mathematics in Perspective

**29th Residential Course for Sixth Form Students
Wednesday 24 – Friday 26 June 2015
University of Leeds, Devonshire Hall**

**Sample lectures include:**

**“Polyhedra” – John Truss
“Mathematics and Card Cheating” – Kevin Houston
“Funny Fluids and Soft Stuff” – Daniel Read
“The Taccoma Bridge**

**“**– Oliver Harlen

**“**Supernovae

**“**– Sam Falle

# Maria Droujkova: Multiplication Explorers Online Course

### Multiplication Explorers Online Course

What’s so special about multiplication? To begin with, it is universal and therefore unavoidable. We all had to learn it. And our children will have to learn it too, in some shape or form. Here’s something else – the way you will help your children learn multiplication will mirror the way you learned it yourself, unless you take steps to change that. So how did you learn?

Did you spend hours repeating “the facts” with chants, flashcards, and seemingly endless drills? A lot of things have changed since we were children. There must be more effective ways of mastering multiplication! And there must be ways to make it relevant to our lives!

Let’s dig deeper. Do you remember how you felt studying the multiplication tables? For so many people we meet, the dislike and fear of math can be traced all the way back to their struggles to understand (and not just memorize) multiplication. Can we change this pattern so our children, approaching multiplication, feel not fear but curiosity, not anxiety but joy, not alienation but affinity? Can multiplication be more about smart play, rich mathematical thinking and usefulness everywhere in life?

This is what our Multiplication Explorers course is all about. It explores holistic approach to learning multiplication. Memorization based on smart number patterns is a part of it. The course also includes bridges between multiplication and natural world, as well as links to many virtual and imaginary worlds in books, music, technology, art, and games.

We invite you to boldly go beyond the familiar representations of multiplication such as skip counting and repeated addition, to explore many more meaningful, beautiful, and fun models. This course is a launch pad to adventures across the universe of multiplication.

# Hamid Naderi Yeganeh: Mathematical drawings made from segments

**This image shows 1,000 line segments. For each \(i=1,2,3,\cdots,1000\) the endpoints of the \(i\)-th line segment are:**

**\[\left(\cos\left(\frac{2\pi i}{1000}\right), \sin\left(\frac{2\pi i}{1000}\right)\right)\]**

**and**

**\[\left(\cos\left(\frac{4\pi i}{1000}\right), \sin\left(\frac{4\pi i}{1000}\right)\right).\]**

**See other images at:**

**mathematics.culturalspot.org &**

**Mathematical Concepts Illustrated by Hamid Naderi Yeganeh.**

# Japanese visual multiplication

# Job opportunity at the Cambridge Mathematics Education Project

From Julian Gilbey:

We are currently looking for somebody to join our team at the Cambridge Mathematics Education Project. The appointee will be working with us to develop Educational Resources for our website which is aimed at 16+ mathematics.

More information about the project is available from

http://www.maths.cam.ac.uk/cmep Details of the job are available here:

http://www.jobs.cam.ac.uk/job/5301/