The Imitation Game Cryptography Competition

From Charles Walkden, University of Manchester:

Dear all,

The Imitation Game Cryptography Competition:  www.maths.manchester.ac.uk/cryptography_competition_the_imitation_game

`The Imitation Game‘ is a biopic of Alan Turing starring Benedict Cumberbatch in the lead role (also starring Keira Knightley, Charles Dance,…) and will be released in cinemas on Nov 14th.

The film’s distributors asked us to get involved in the publicity and promotion for the film by running a one-off on-line `Imitation Game Cryptography Competition‘, www.maths.manchester.ac.uk/cryptography_competition_the_imitation_game.

It’s free to enter and is open to everybody.  There are some great prizes for you to win: film posters signed by the cast, DVD bundles, soundtracks, etc,  The competition runs until 14th Nov.
Please can you spread the word to anyone and everyone (and feel free to take part yourself!).
PS:  The School’s annual `Alan Turing Cryptography Competition’ will run again from Jan 2015, with registration opening on 1st Dec.  Unlike the Imitation Game competition, this is only open to school children in Year 11 or below – but again please spread the word!
Andrew, Charles, Kees, Sebastian, Helen

Ofstead: Low-level classroom disruption hits learning

From BBC http://www.bbc.co.uk/news/education-29342539 :

Low-level, persistent disruptive behaviour in England’s schools is affecting pupils’ learning and damaging their life chances, inspectors warn.

The report says too many school leaders, especially in secondary schools, underestimate the prevalence and negative impact of low-level disruptive behaviour and some fail to identify or tackle it at an early stage.

 

Source: Poll conducted by YouGov for Ofsted, http://www.ofsted.gov.uk/news/failure-of-leadership-tackling-poor-behaviour-costing-pupils-hour-of-learning-day

This is one of many low-level school issues that affect undergraduate mathematics teaching.  In a mathematics lecture, weaker students are more prone to “loosing the thread” than in most other courses. Also, students for whom English is not the first language,  in particular,  most from overseas are more sensitive to the signal-to-noise ratio than natives,  and, at a certain level of background noise,  their understanding of the lecture becomes seriously degraded. In my opinion,  this is one of many neglected issues of undergraduate mathematics education. I in my lectures always insist on complete silence in the audience (and usually start my first lecture with  a brief explanation of the concept of signal-to-noise ratio).

Brain works in sleep

Many mathematicians believe that that their brains continue to do mathematics during sleep. A paper

Kouider et al., Inducing Task-Relevant Responses to Speech in the Sleeping Brain, Current Biology (2014), http://dx.doi.org/10.1016/j.cub.2014.08.016

Proves that brain continues in sleep some mental activities of the day.

From the summary of the paper:

using semantic categorization and lexical decision tasks, we studied task-relevant responses triggered by spoken stimuli in the sleeping brain. Awake participants classified words as either animals or objects (experiment 1) or as either words or pseudowords (experiment 2) by pressing a button with their right or left hand, while transitioning toward sleep. The lateralized readiness potential (LRP), an electrophysiological index of response preparation, revealed that task-specific preparatory responses are preserved during sleep. These findings demonstrate that despite the absence of awareness and behavioral responsiveness, sleepers can still extract task relevant information from external stimuli and covertly prepare for appropriate motor responses.

The paper generated a huge response in mass media: BBC, New Scientist, NBC News. It is mentioned in this blog because the study of brain activity  is relevant to mathematics education. A naive question: do our students get enough sleep?

Citizen Maths MOOC

An experimental MOOC (Massive Open Online Course) Citizen Maths is launched and the first phase of the course is open for registration. It is free and open for everyone; its motto is Powerful Ideas in Action.

The readers of this blog may like to register for the course, because, as the organisers say,

The success of this first phase of Citizen Maths will depend crucially on the feedback that we obtain. We are particularly keen to get feedback from:

  • learners who do the course;
  • those with an interest in the learning and teaching of maths, and in the design of online courses.

There is a link to a feedback form on every page of the Citizen Maths web site, and there will be a similar link on every page of the course when it goes live on or around 12 September.

The first pilot stage will run for four weeks and cover the first “powerful idea”: proportion. An admirable choice (a detailed discussion of the role of proportions in elementary mathematics can be found in this paper by Tony Gardiner).

Maryam Mirzakhani, the first woman to win Fields Medal

Maryam Mirzakhani

From Maryam Mirzakhani’s interview to the Clay Institute:

My older brother was the person who got me interested in science in general. He used to tell me what he learned in school. My first memory of mathematics is probably the time that he told me about the problem of adding numbers from 1 to 100. I think he had read in a popular science journal how Gauss solved this problem. The solution was quite fascinating for me. That was the first time I enjoyed a beautiful solution, though I couldn’t find it myself. [...]

I was very lucky in many ways. The war ended when I finished elementary school; I couldn’t have had the great opportunities that I had if I had been born 10 years earlier. I went to a great high school in Tehran – Farzanegan – and had very good teachers.[...]

Our school was close to a street full of bookstores in Tehran. I remember how walking along this crowded street, and going to the bookstores, was so exciting for us. We couldn’t skim through the books like people usually do here in a bookstore, so we would end up buying a lot of random books. Also, our school principal was a strong-willed woman who was willing to go a long way to provide us with the same opportunities as the boys’ school.

Later, I got involved in Math Olympiads that made me think about harder problems. As a teenager, I enjoyed the challenge. But most importantly, I met many inspiring mathematicians and friends at Sharif University. The more I spent time on mathematics, the more excited I became.

Read the full text of the interview at The Guardian website.

Programmes of study for Mathematics at Key Stage 4

Programmes of study for  Mathematics at Key Stage 4, which will be taught in schools from September 2015 alongside the new English and mathematics GCSEs, are published today. This appears to be the final pack of statutory documents:

Can you pass the maths test for 11-year-olds?

A sample KS2 test based on the official publication from Standards and Testing Agency,
2016 key stage 2 mathematics test: sample questions, mark scheme and commentary,
was published in The Telegraph. One question attracts attention. In The Telegraph version, it is

A question as published in The Telegraph.

The answer given is £12,396.

And this is the original question from 2016 key stage 2 mathematics test: sample questions, mark scheme and commentary

The official version of the same question

In my opinion, both versions contain serious didactic errors. Would the readers agree with me?

And here are official marking guidelines:

Official marking guidelines

And the official commentary:

In year 6 pupils are expected to interpret and solve problems using pie charts. In this question pupils can use a number of strategies including using angle facts or using fractions to complete the proportional reasoning required.
Pupils are expected to use known facts and procedures to solve this more complex problem. There are a small number of numeric steps but there is a demand associated with interpretation of data (or using spatial knowledge). The response strategy requires pupils to organise their method.