Benefits of Asian-style maths teaching

You may import a “style of teaching”, but cannot import the social environment of teaching — this is a key, and, perhaps, impassible obstacle to development of a coherent mathematics education policy in England. But attempts continue regardless: DfE has no other options.

From BBC:

Thousands of primary schools in England are to be offered the chance to follow an Asian style of teaching maths.

More from BBC:

Asian maths method offered to schools

The government is providing £41m of funding to help interested schools to adopt this method, which is used in high performing places like Shanghai, Singapore and Hong Kong.

The money will be available to more than 8,000 primary schools in England.

This approach to maths is already used in some schools, but the cash means it can be taken up more widely.

The Department for Education says the mastery approach to maths teaching, as it is known, involves children being taught as a whole class and is supported by the use of high-quality textbooks.

Read the full story.  Coming soon: comments on mastery and NCETM‘s thinking

More detailed explanations of the NCETM’s thinking in this developing area can be found in several posts on the blog page of our Director, Charlie Stripp, in a document entitled The Essence of Maths Teaching for Mastery, published in June 2016, and in an earlier NCETM paper from autumn 2014.

Almost half of primary pupils miss new Sats standard

From the BBC:

Official data shows just over half (53%) of 11-year-olds made the grade in reading, writing and mathematics. […]

Department for Education statistics show:

  • 66% of pupils met the standard in reading
  • 70% in maths
  • 72% in grammar, punctuation and spelling
  • 74% in the teacher-assessed writing

The overall figure of 53% relates to the number of pupils who reached the expected standard in all three subjects.

Read the full story.

Richard Feynman on Teaching Math to Kids

A post on Farnam Street. A quote:

Feynman knew the difference between knowing the name of something and knowing something. And was often prone to telling the emperor they had no clothes as this illuminating example from James Gleick’s book Genius: The Life and Science of Richard Feynman shows.

Educating his children gave him pause as to how the elements of teaching should be employed. By the time his son Carl was four, Feynman was “actively lobbying against a first-grade science book proposed for California schools.”

It began with pictures of a mechanical wind-up dog, a real dog, and a motorcycle, and for each the same question: “What makes it move?” The proposed answer—“ Energy makes it move”— enraged him.

That was tautology, he argued—empty definition. Feynman, having made a career of understanding the deep abstractions of energy, said it would be better to begin a science course by taking apart a toy dog, revealing the cleverness of the gears and ratchets. To tell a first-grader that “energy makes it move” would be no more helpful, he said, than saying “God makes it move” or “moveability makes it move.”

Read the full story.

Mathematics in the news this week

France DGSE: Spy service sets school code-breaking challenge

France’s external intelligence service, the DGSE, has sponsored a school competition to find the nation’s most talented young code-breakers.

It is the first time the DGSE has got involved in such a project in schools.

The first round drew in 18,000 pupils, and just 38 competed in the final on Wednesday, won by a Parisian team.


STEM Competitions Motivate Students :

“The main message is mathematics is not about numbers and figures,” [Mark] Saul said. “It’s about figuring things out. Whenever you’re figuring something out, you’re doing something mathematical.”

Rebecca Hanson Launches A Breakthrough in Maths Teaching for Primary Students :

Rebecca Hanson has opened her agency Authentic Maths to help Primary School Teachers in the UK offering solutions to the difficulties being experienced with the implementation of the Government’s changes to the primary mathematics curriculum.

UK follows Russia’s example to set up specialist sixth form maths colleges:

A key figure in the establishment of specialist maths institutions in the UK was Baroness (Alison) Wolf, a professor at King’s College London. She knew about Russian maths skills because of her work in universities, where maths departments often attract a fair few Russian academics.

Initially, the idea in the UK was for universities to set up a nationwide network of specialist maths schools. However, only King’s College London and Exeter have taken the plunge.

Alexandre Borovik: Decoupling of Assessment

BBC reported today that

Thousands of parents in England plan to keep their children off school for a day next week in protest at tough new national tests, campaigners say.

Parents from the Let Our Kids Be Kids campaign said children as young as six were labelling themselves failures.

In a letter to Education Secretary Nicky Morgan, they said primary pupils were being asked to learn concepts that may be beyond their capability.

The government said the tests should not cause pupils stress.

These new tests, known as Sats, have been drawn up to assess children’s grasp of the recently introduced primary school national curriculum, which is widely considered to be harder than the previous one.

The letter from the campaign, which says it represents parents of six- and seven-year-olds across the country, says children are crying about going to school.

There is a simple solution – decoupling of assessment of schools from assessment of individual children.

As far I remember my school years back in Soviet Russia of 1960s, schools there were assessed by regular (but not frequent) “ministerial tests”. A school received, without warning, a test paper in a sealed envelope which could be open only immediately before the test; pupils’ test scripts were collected, put into an enclosed envelope, sealed and sent back. Tests were marked in the local education authority (and on some occasions even a step up in the administrative hierarchy — in the regional education authority); marked test scripts, however, were not returned to schools, and schools received only summary feedback — but no information about performance of individual students.

This policy of anonymised summary tests created a psychological environment of trust between pupils and the teacher — children knew that it was not them who were assessed, but their teacher and their school, and they tried hard to help their teacher. Good teachers could build on this trust a supportive working environment in a classroom.  Schools and teachers who performed well in such anonymised testing could be trusted to assess pupils in a formative, non-intrusive, non-intimidating way — and without individual high stakes testing.

Of course, all that are my memories from another historic epoch and from the country that no longer exists. I could be mistaken in details, but I am quite confident about the essence. In this country and in recent years, I happened to take part in a few meetings in the Department for Education, where I raised this issue. Education experts present at these meetings liked the idea but it was not followed by any discussion since it was outside of meetings’ agenda — we had to focus on the  content of the new curriculum, not assessment. I would love to see a proper public discussion of feasibility of decoupling.

I teach mathematics at a university. I think I am not alone (I heard similar concerns from my colleagues from Universities from all over the country) in feeling that many our students come to university with a deformed attitude to assessment — for example, with subconscious desire to forget everything as soon as they have sat an exam. It could happen that some of them, in their school years, suffered from overexamination but were not receiving  sufficient formative feedback. At university, such students do not know how to use teachers’ feedback. They do not know how to ask questions. Could it happen that the roots of the problem could be traced back to junior school?

Disclaimer. The views expressed do not necessarily represent the position of my employer or any other person, organisation, or institution.

Alexandre Borovik

Tony Gardiner: “The Man Who Knew Infinity”

The film The Man Who Knew Infinity  goes on UK general release from 8th April.

It is a compressed, and beautifully dramatised version of the theme treated more fully in Robert Kanigel’s double biography of the same name – which treats Ramanujan alongside a partial portrait of G.H.Hardy.
Mathematicians can be remarkably unforgiving about attempts to present mathematics to a general audience.  And Ramanujan’s story could so easily be cheapened – with awkward aspects being trivialised, in order to pander to current prejudices.  The Good News is that, not only has this been avoided, but the film manages to incorporate much of the detail and spirit of what we know, while using its dramatic freedom to confront important issues that are often either treated too tritely, or passed over in silence.  The project may have taken 10 years in the making, but the result has been worth it.
As someone who does not usually watch movies, I simply encourage everyone to see it
(perhaps several times), to encourage others to see it, and to use it to discuss the issues which it raises.
A film is not meant to be a reflection of reality.  This film would seem to be a fairly faithful representation of what we know in those areas where fidelity matters. In other respects it  exercises flexibility.  In contrast to Ramanujan, Dev Patel is slim and beautifully formed; yet he manages to capture an essential seriousness and devotion which is entirely plausible.  His wife is portrayed as older and I suspect much more beautiful than the real Janaki; yet her portrayal of profound simplicity is moving in a way that seems entirely appropriate (whether or not it is documented).
In his review for the February issue of the Notices of the AMS
George Andrews suggested that the film will help students appreciate the importance of “proofs”.  In fact, the struggle between proof and intuition, between Hardy and Ramanujan, is not so cleanly resolved, and there is a danger that the film may leave many strengthened in their belief in mathematical invention as “magical intuition”.  So the film should be used to actively encourage a deeper discussion of the relative importance of proof, and what is too often simply labelled “intuition” (as if it were not susceptible to, any further explanation).
Here is a chance to grapple with the often neglected interplay between
   (a) technical, or formal, training in universal methods – whereby my individual “mental
universe” is disciplined to fit with yours (or with some imaginary “Platonic ideal”),
   (b) our individual, idiosyncratic way of thinking about these shared objects and processes – whereby my thoughts avoid being mechanical replicas of everyone else’s, and so provide scope for originality.
Without the second, we are little better than machines.  And without the first, we are almost bound to go astray.
Almost all students need a significant dose of (a) before their (b)-type thoughts can become fruitful.  But some individuals’ (b)-type thoughts flourish – mostly unerringly – with relatively little (a)-type formalism. One thinks of Euler, or Schubert, or 19th century Italian algebraic geometers, or Feynman, or Thurston, or … .  The problem is then how to check the resulting claimed insights, to embed them within mathematics as a whole, and to make the methods available to the rest of us.  By neglecting such delicate matters we leave a vacuum that is too easily filled by half-truths.
Tony Gardiner

Response to Simon Jenkins

I have read his paper with mixed feelings:

Charge the maths lobby with the uselessness of its subject and the answer is a mix of chauvinism and vacuity. Maths must be taught if we are to beat the Chinese (at maths) (Only those arguments that can be linked to immediate pragmatism are regarded as worth voicing!). Or it falls back on primitivism, that maths “trains the mind”. So does learning the Qur’an and reciting Latin verbs. (So what? I would adore an education system that offers the opportunity of learning such things, provided that it is not compulsory. When I was 15 years old I was annoyed by the idea that I – as a child of the 20th century- had to miss the opportunity of learning Latin, so I took private Latin lessons. I was lucky enough that I was in the German highschool such that the wife of one of our teachers could teach me Latin. Later I did the same for Ancient Greek, too.)

Meanwhile, the curriculum systematically denies pupils what might be of real use to them and society. There is no “need” for more mathematicians. The nation needs, and therefore pays most for, more executives, accountants, salesmen, designers and creative thinkers. (Who has the priviledge to decide what the society needs? After all, those who have this priviledge are able to create these needs in the first place. So, it is a tautology.)

At the very least, today’s pupils should go into the world with a knowledge of their history and geography, their environment, the working of their bodies, the upbringing of children, law, money, the economy and civil rights.

This is in addition to self-confidence, emotional intelligence and the culture of the English imagination. (As if these attributes can be acquired in a way that is isolated from learning mathematics!) All are crowded out by a political obsession with maths.

The reason is depressingly clear. Maths is merely an easy subject to measure, nationally and internationally. It thus facilitates the bureaucratic craving for targetry and control. (With this part I agree. In fact, this is closedly connected with my above comment on “determining the needs”. Quantitative measurements and statistics are important to give the decisions an objective aura and disguise their unavoidably ideological nature. For this purpose, one has to make sure to raise statistics-literate generations, which is not what mathematics education means to me.)

Altogether the article has brought to my mind the verses from “Murder in the Cathedral” (T.S. Eliott):

The last temptation is the greatest treason:

To do the right deed for the wrong reason.

Simon Jenkins: Our fixation with maths doesn’t add up

in The Guardian, Thursday 10 March 2016. A random paragraph:

There is nothing, except religion, as conservative as a school curriculum. It is drenched in archaic prejudice and vested interest. When the medieval church banned geography as an offence against the Bible, what had been the queen of the sciences never recovered. Instead Latin dominated the “grammar” curriculum into the 20th century, to the expense of all science. Today maths is the new Latin.

Read the full article. Refutation anyone?


A. Borovik: Sublime Symmetry: Mathematics and Art

A new paper in The De Morgan Gazette:

Form the Introduction:

This paper is a text of a talk at the opening of the Exhibition Sublime Symmetry: The Mathematics behind De Morgan’s Ceramic Designs  in the delighful Towneley Hall  Burnley, on 5 March 2016. The Exhibition is the first one in Sublime Symmetry Tour  organised by The De Morgan Foundation.

I use this opportunity to bring Sublime Symmetry Tour to the attention of the British mathematics community, and list Tour venues:

06 March to 05 June 2016 at Towneley Hall, Burnley
11 June to 04 September 2016 at Cannon Hall, Barnsley
10 September to 04 December 2016 at Torre Abbey, Torbay
10 December 2016 to 04 March 2017 at the New Walk Gallery, Leicester
12 March to 03 September 2017 at the William Morris Gallery, Walthamstow

William De Morgan, Peacock Dish. The De Morgan Foundation

William De Morgan, Peacock Dish. The De Morgan Foundation.