Alexandre Borovik: Decoupling of Assessment

BBC reported today that

Thousands of parents in England plan to keep their children off school for a day next week in protest at tough new national tests, campaigners say.

Parents from the Let Our Kids Be Kids campaign said children as young as six were labelling themselves failures.

In a letter to Education Secretary Nicky Morgan, they said primary pupils were being asked to learn concepts that may be beyond their capability.

The government said the tests should not cause pupils stress.

These new tests, known as Sats, have been drawn up to assess children’s grasp of the recently introduced primary school national curriculum, which is widely considered to be harder than the previous one.

The letter from the campaign, which says it represents parents of six- and seven-year-olds across the country, says children are crying about going to school.

There is a simple solution – decoupling of assessment of schools from assessment of individual children.

As far I remember my school years back in Soviet Russia of 1960s, schools there were assessed by regular (but not frequent) “ministerial tests”. A school received, without warning, a test paper in a sealed envelope which could be open only immediately before the test; pupils’ test scripts were collected, put into an enclosed envelope, sealed and sent back. Tests were marked in the local education authority (and on some occasions even a step up in the administrative hierarchy — in the regional education authority); marked test scripts, however, were not returned to schools, and schools received only summary feedback — but no information about performance of individual students.

This policy of anonymised summary tests created a psychological environment of trust between pupils and the teacher — children knew that it was not them who were assessed, but their teacher and their school, and they tried hard to help their teacher. Good teachers could build on this trust a supportive working environment in a classroom.  Schools and teachers who performed well in such anonymised testing could be trusted to assess pupils in a formative, non-intrusive, non-intimidating way — and without individual high stakes testing.

Of course, all that are my memories from another historic epoch and from the country that no longer exists. I could be mistaken in details, but I am quite confident about the essence. In this country and in recent years, I happened to take part in a few meetings in the Department for Education, where I raised this issue. Education experts present at these meetings liked the idea but it was not followed since it was outside of meetings’ agenda — we had to focus on the  content of the new curriculum, not assessment. I would love to see a proper public discussion of feasibility of decoupling.

I teach mathematics at a university. I think I am not alone (I heard similar concerns from my colleagues from Universities from all over the country) in feeling that many our students come to university with a deformed attitude to assessment — for example, with subconscious desire to forget everything as soon as they have sat an exam. It could happen that some of them, in their school years, suffered from overexamination but were not receiving  sufficient formative feedback. At university, such students do not know how to use teachers’ feedback. They do not know how to ask questions. Could it happen that the roots of the problem could be traced back to junior school?

Disclaimer. The views expressed do not necessarily represent the position of my employer or any other person, organisation, or institution.

Alexandre Borovik

Tony Gardiner Receives the 2016 Award for Excellence in Mathematics Education

Citation for the 2016 Award for Excellence in Mathematics Education to

Dr. Anthony David Gardiner

It is with great pleasure that the Award Committee hereby announces that the 2016 Award is given to Dr. Anthony D. Gardiner, currently retired from University of Birmingham, United Kingdom, in recognition of his more than forty years of sustained and multiple major contributions to enhancing the problem-solving skills of generations of mathematics students in the United Kingdom (UK) and beyond.

Gardiner’s major achievements include:

  • orchestrating teams of volunteers from many constituencies, including teachers, mathematics educators and university mathematicians, to create a portfolio of mathematics contests, leading eventually to the creation of the UK Mathematics Trust, which creates problem-solving challenges taken by well over half a million students per year;
  • creating structures that dramatically increased and broadened participation in mathematics competitions and other activities supporting UK participation in the International Mathematics Olympiad;
  • leading the UK IMO team (1990 – 95);
  • creating problem solving journals for school students (including grading thousands of solutions personally), leading eventually to the Problem Solving Journal for Secondary Students (edited by Dr. Gardiner since 2003, with a circulation over 5,000);
  • authoring 15 books on mathematical thinking and mathematical problem solving, including Understanding Infinity, Discovering Mathematics: the art of investigation, Mathematical Puzzling (all reprinted by Dover Publications), the four volume series Extension Mathematics (Oxford), and the recent Teaching mathematics at secondary level (Open Book Publishers).

In addition, Gardiner’s expertise on the problem-solving abilities of English schoolchildren, and his insights into omissions in UK mathematics education has led to his being consulted by multiple UK Ministers of State for Education, and have influenced significant changes in the UK mathematics curriculum. Gardiner has also served in multiple high level leadership positions in mathematics education both in the UK and internationally, including Council of the London Mathematical Society, and member of the Education Committee (1990s), Presidency of the (UK) Mathematical Association in 1997-98, chair of the Education Committee of the European Mathematical Society (2000-04), and Senior Vice President of the World Federation of National Mathematics Competitions (2004-08). He has addressed major teacher conferences in more than 10 countries, and he was an Invited Lecturer at the 10th International Congress of Mathematics Education in 2004. He has organized many meetings and programs to support mathematics education, teacher professional development, and to promote problem solving. He has contributed numerous articles to newspapers and magazines to communicate the goals of successful mathematics education to a broader public. Both the extent and impact of Gardiner’s efforts are remarkable. He provides an inspiring example of how a mathematician can have a positive impact on mathematics education; he is a most worthy recipient of the Texas A&M Award for Excellence in Mathematics Education.

Gardiner received his doctorate in 1973 from the University of Warwick, UK. He taught at the University of East Africa from 1968-69, University of Birmingham from 1974 to 2012. During that time he worked at the Free University of Berlin on a fellowship, and held numerous visiting positions including at the University of Bielefeld in Germany, University of Waterloo, the University of Melbourne and the University of Western Australia.


This  award  is  established  at the Texas  A&M  University to  recognize  works  of  lasting significance  and  impact  in advancing  mathematics  education  as  an  interdisciplinary field  that  links mathematics,  educational  studies  and  practices.  In  particular,  the award  recognizes major  contributions  to  new  knowledge  and  scholarship  as  well  as exemplary contributions  in  promoting  interdisciplinary  collaboration  in  mathematics
This  is  an  annual  award  that  consists  of  a  commemorative  plaque  and  a  cash  prize ($3000).  A  recipient  will  be  selected  yearly  and  will  be  invited  to  give  a  keynote  talk, with  all  travel  expenses  covered,  at  a  workshop  dedicated  to  advancing  mathematics education.  Moreover,  subject  to  the  availability  of  the  recipient,  a  housing  allowance and  a  $5000  stipend  will  also  be  provided  to  the  recipient  to  spend  two  weeks  in residence  at  Texas  A&M  University  interacting  with  students  and  faculty  in  seminars and  informal  mentoring  sessions.

The Politics of Math Education

NYT Opinion Page, 3 December 2915, by

A quote:

The new math was widely praised at first as a model bipartisan reform effort. It was developed in the 1950s as part of the “Cold War of the classrooms,” and the resulting textbooks were most widely disseminated in the 1960s, with liberals and academic elites promoting it as a central component of education for the modern world. The United States Chamber of Commerce and political conservatives also praised federal support of curriculum reforms like the new math, in part because these reforms were led by mathematicians, not so-called progressive educators.

By the 1970s, however, conservative critics claimed the reforms had replaced rigorous mathematics with useless abstractions, a curriculum of “frills,” in the words of Congressman John M. Ashbrook, Republican of Ohio. States quickly beat a retreat from new math in the mid-1970s and though the material never totally disappeared from the curriculum, by the end of the decade the label “new math” had become toxic to many publishers and districts.

Though critics of the new math often used reports of declining test scores to justify their stance, studies routinely showed mixed test score trends. What had really changed were attitudes toward elite knowledge, as well as levels of trust in federal initiatives that reached into traditionally local domains. That is, the politics had changed.

Whereas many conservatives in 1958 felt that the sensible thing to do was to put elite academic mathematicians in charge of the school curriculum, by 1978 the conservative thing to do was to restore the math curriculum to local control and emphasize tradition — to go “back to basics.” This was a claim both about who controlled intellectual training and about what forms of mental discipline should be promoted. The idea that the complex problems students would face required training in the flexible, creative mathematics of elite practitioners was replaced by claims that modern students needed grounding in memorization, militaristic discipline and rapid recall of arithmetic facts.

The fate of the new math suggests that much of today’s debate about the Common Core’s mathematics reforms may be misplaced. Both proponents and critics of the Common Core’s promise to promote “adaptive reasoning” alongside “procedural fluency” are engaged in this long tradition of disagreements about the math curriculum. These controversies are unlikely to be resolved, because there’s not one right approach to how we should train students to think.

We need to get away from the idea that math education is only a matter of selecting the right textbook and finding good teachers (though of course those remain very important). The new math’s reception was fundamentally shaped by Americans’ trust in federal initiatives and elite experts, their demands for local control and their beliefs about the skills citizens needed to face the problems of the modern world. Today these same political concerns will ultimately determine the future of the Common Core.

As long as learning math counts as learning to think, the fortunes of any math curriculum will almost certainly be closely tied to claims about what constitutes rigorous thought — and who gets to decide. [Emphasis is by AB]

Christopher J. Phillips teaches history at Carnegie Mellon University and is the author of “The New Math: A Political History.”

Ronnie Brown: Getting Students to Not Fear Confusion

Adapted from StackExchange,  Getting Students to Not Fear Confusion

QUESTION:  I’m a fifth year grad student, and I’ve taught several classes for freshmen and sophomores. This summer, as an “advanced” (whatever that means) grad student I got to teach an upper level class: Intro to Real Analysis.

Since this was essentially these student’s first “real” math class, they haven’t really learned how to study for or learn this type of thing. I’ve continually emphasized throughout the summer that they need to put in more work than just doing a few homework problems a week.

Getting a feel for the definitions and concepts involved takes time and effort of going through proofs of theorems and figuring out why things were needed. You need to build up an arsenal of examples so some general picture of the ideas are in your head.

Most importantly, in my opinion, is that you wallow in your confusion for a bit when struggling with problems. Spending time with your confusion and trying to pull yourself out of it (even if it doesn’t work!) is a huge part of the learning process. Of course asking for help after a point is important too.

Question: What is a good way to convince students that spending time lost and confused is a reasonable thing and how do you actually motivate them to do it?

Anecdote: Despite trying all quarter to explain this in various ways, I would consistently have people come in to office hours who had barely touched the homework because “they were confused”. But they hadn’t tried anything. Then when I talk around an answer to try to get them to do certain key parts on their own or get them to understand the concept involved, they would get frustrated and ask “so does it converge or not?!”

It is incredibly hard to shake their firm belief that the answer is the important thing. Those that do get out of this belief seem to get stuck at writing down a correct proof is the important thing. None seem to make it to wanting to understand it as the important thing. (Probably a good community wiki question? Also, real-analysis might be an inappropriate tag, do what you will)

ANSWER from Ronnie Brown: Has anyone tried as an additional technique the “fill-in” method?

This is based on the tried and tested method of teaching called “reverse chaining”. To illustrate it, if you are teaching a child to put on a vest, you do not throw it the vest and say put it on. Instead, you put it almost on, and ask the child to do the last bit, and so succeed. You gradually put the vest less and less on, the child always succeeds, and finally can put it on without help. This is called “error-less learning” and is a tried and tested method, particularly in animal training (almost the only method! ask any psychologist, as I learned it from one).

So we have tried writing out a proof that, say, the limit of the product is the product of the limits, (not possible for a student to do from scratch), then blanking out various bits, which the students have to fill in, using the clues from the other bits not blanked out. This is quite realistic, where a professional writes out a proof and then looks for the mistakes and gaps! The important point is that you are giving students the structure of the proof, so that is also teaching something.

This kind of exercise is also nice and easy to mark!

Finally re failure: the secret of success is the successful management of failure! That can be taught by moving slowly from small failures to extended ones. This is a standard teaching method.

Additional points: My psychologist friend and colleague assured me that the accepted principle is that people (and animals) learn from success. Another way of getting this success is to add so many props to a situation that success is assured, and then gradually to remove the props. There are of course severe problems in doing all this in large classes. This will require lots of ingenuity from all you talented young people! You can find some more discussion of issues in the article discussing the notion of context versus content.

My own bafflement in teenage education was not of course in mathematics, but was in art: I had no idea of the basics of drawing and sketching. What was I supposed to be doing? So I am a believer in the interest and importance of the notion of methodology in whatever one is doing, or trying to do, and here is link to a discussion of the methodology of mathematics.

Dec 10, 2014 I’d make another point, which is one needs observation, which should be compared to a piano tutor listening to the tutees performance. I have tried teaching groups of say 5 or 6, where I would write nothing on the board, but I would ask a student to go to the board, and do one of the set exercises. “I don’t know how to do it!” “Well, why not write the question on the board as a start.” Then we would proceed, giving hints as to strategy, which observation had just shown was not there, but with the student doing all the writing.

In an analysis course, when we have at one stage to prove AB, I would ask the class: “What is the first line of the proof?” Then: “What is the last line of the proof?” and after help and a few repetitions they would get the idea. I’m afraid grammar has gone out of the school syllabus, as “old fashioned”!

Seeing maths worked out in real time, with failures, and how a professional deals with failure, is essential for learning, and at the research level. I remember thinking after an all day session with Michael Barratt in 1959: “Well, if Michael Barratt can try one damn fool thing after another, then so can I!”, and I have followed this method ever since. (Mind you his tries were not all that “damn fool”, but I am sure you get the idea.) The secret of success is the successful management of failure, and this is perhaps best learned from observation of a professional.

PhD studentships at MMU

PhD 2016 Competition Scholarships [mathematics related]:

Laurent Schwartz on learning mathematics

Laurent Schwartz, as quoted from  A Mathematician Grappling with His Century, Birkhäuser Basel, 2001, pp. 30-31. [With thanks to Jonathan Crabtree]

I was always deeply uncertain about my own intellectual capacity; I thought I was unintelligent. And it is true that I was, and still am, rather slow. I need time to seize things because I always need to understand them fully. Even when I was the first to answer the teacher’s questions, I knew it was because they happened to be questions to which I already knew the answer. But if a new question arose, usually students who weren’t as good as I was answered before me. Towards the end of eleventh grade, I secretly thought of myself as stupid. I worried about this for a long time. Not only did I believe I was stupid, but I couldn’t understand the contradiction between this stupidity and my good grades. I never talked about this to anyone, but I always felt convinced that my imposture would someday be revealed: the whole world and myself would finally see that what looked like intelligence was really just an illusion. If this ever happened, apparently no one noticed it, and I’m still just as slow. When a teacher dictated something to us, I had real trouble taking notes; it’s still difficult for me to follow a seminar.

At the end of eleventh grade, I took the measure of the situation, and came to the conclusion that rapidity doesn’t have a precise relation to intelligence. What is important is to deeply understand things and their relations to each other. This is where intelligence lies. The fact of being quick or slow isn’t really relevant. Naturally, it’s help to be quick, like it is to have a good memory. But it’s neither necessary or sufficient for intellectual success.The laurels I won in the Concourse General liberated me definitely from my anguish. I won first prize in Latin theme and first access it in Latin version; I was no longer merely a brilliant high school student, I acquired national fame. The Concourse General counted a lot in in my life, by helping me to get rid of a terrible complex. Of course, I was not instantly metamorphosed, and I’ve always had to confront the same problems; it’s just that since that day I know that these obstacles are not unsurmountable and that in spite of delicate and even painful moments,they will not block my way to accomplishment, which research represent for me. Fortunately, I had an excellent memory. For instance, in twelfth grade, in math, I believe that at the end of the year I remembered every single thing I had learned, without ever have written anything down. At that point, I knew my limits but I had a solid feeing of confidence in my possibility of success.

This type of competition is an excellent thing. Many young people feel self-doubt, for one reason or another. The refusal of any kind of comparison which reigns in our classrooms as a concession to egalitarianism, is all too often quite destructive; it prevents the young people who doubt their own capacities, and particularly those from modest backgrounds, from acquiring real confidence in themselves. But self-confidence is a condition of success. Of course, one must be modest, and every intellectual needs to recall this. I’m perfectly conscious of the immensity of my ignorance compared with what I know. It’s enough to meet other intellectuals to see that my knowledge is just a drop of water in an ocean. Every intellectual needs to be capable of considering himself relatively, and measuring the immensity of his ignorance. But he must also have confidence in himself and in his possibilities of succeeding, through the constant and tenacious search for truth.

[With thanks to Jonathan Crabtree]

MIT Primes

From Richard Rusczyk:

Over the last decade, many students have asked us how to get involved in research. To address this need, we are partnering with MIT PRIMES, which has trained many outstanding high school student researchers over the last several years. MIT PRIMES/AoPS CrowdMath will allow mathematically sophisticated high school students to collaborate on unsolved problems under the mentorship of outstanding mathematicians. CrowdMath begins with a series of Resources for students to discuss over the next couple of months. On March 1, we will release the official research problems, which will be based on material students learn while discussing the Resources.

Our goal is to discover new knowledge! Should we succeed, we’ll produce a research paper based on our collective work.

Visit the MIT PRIMES/AoPS CrowdMath pages for more details.

Victor Gutenmacher: My New Year news about “Lines and Curves” and other books

Happy New Year!​

I’d like to share with you​ that ​t​he latest ​English ​version of Lines and Curves is now available on the Springer website (they made thousands of their books freely available online):

A later addition, 07 January 2016:

Sorry, it looks like it was a mistake on the part of Springer: only few hours our book “Lines and Curves” was free on their site. In a case that some kids want to have the book there is the link to the first English edition :
One can download the book for free in different formats.